1,317 research outputs found

    Phase-Controlled Force and Magnetization Oscillations in Superconducting Ballistic Nanowires

    Full text link
    The emergence of superconductivity-induced phase-controlled forces in the (0.01-0.1) nN range, and of magnetization oscillations, in nanowire junctions, is discussed. A giant magnetic response to applied weak magnetic fields, is predicted in the ballistic Josephson junction formed by a superconducting tip and a surface, bridged by a normal metal nanowire where Andreev states form.Comment: 5 pages, 3 figure

    The KπK\pi form factors from Analyticity and Unitarity

    Full text link
    Analyticity and unitarity techniques are employed to obtain bounds on the shape parameters of the scalar and vector form factors of semileptonic Kl3K_{l3} decays. For this purpose we use vector and scalar correlators evaluated in pQCD, a low energy theorem for scalar form factor, lattice results for the ratio of kaon and pion decay constants, chiral perturbation theory calculations for the scalar form factor at the Callan-Treiman point and experimental information on the phase and modulus of KπK\pi form factors up to an energy \tin=1 {\rm GeV}^2. We further derive regions on the real axis and in the complex-energy plane where the form factors cannot have zeros.Comment: 6 pages, 5 figures; Seminar given at DAE-BRNS Workshop on Hadron Physics Bhabha Atomic Research Centre, Mumbai, India October 31-November 4, 2011, submitted to Proceeding

    Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature by up to 1.3oC: Implications for brain, brown adipose tissue, and muscle physiology

    Get PDF
    Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only cooling mechanism, when direct dissipation of heat from the tissue to the environment is insignificant, e.g., in the brain. While this concept is relatively simple, it has not been described quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the blood, the temperature difference between the organ tissue and the arterial blood is proportional to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot exceed 1.3oC. Unlike the equilibrium temperature difference, the rate of change of the local temperature, with respect to time, does depend on the blood flow. In organs with high perfusion rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes. In organs with low perfusion rates, such changes may have characteristic time constants of tens or hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant of the temperature of tissues with limited heat exchange, such as the brain

    Random walks pertaining to a class of deterministic weighted graphs

    Full text link
    In this note, we try to analyze and clarify the intriguing interplay between some counting problems related to specific thermalized weighted graphs and random walks consistent with such graphs

    Intercomparison of ozone vertical profile measurements by differential absorption lidar and IASI/MetOp satellite in the upper troposphere-lower stratosphere

    Get PDF
    This paper introduces the technique of retrieving the profiles of vertical distribution of ozone considering temperature and aerosol correction in DIAL sounding of the atmosphere. The authors determine wavelengths, which are promising for measurements of ozone profiles in the upper troposphere–lower stratosphere. An ozone differential absorption lidar is designed for the measurements. The results of applying the developed technique to the retrieval of the vertical profiles of ozone considering temperature and aerosol correction in the altitude range 6–15 km in DIAL sounding of the atmosphere confirm the prospects of ozone sounding at selected wavelengths of 341 and 299 nm with the proposed lidar. The 2015 ozone profiles retrieved were compared with satellite IASI data and the Kruger model
    corecore